Also please share this with your 'friends' on facebook, google + and twitter. Add G+MD to your Google Circles
Today: Many patients do not want to take daily medications, but will take nutritional supplements on a daily basis.
Many Willing to Die Months Earlier to Avoid Daily Meds: Survey
During the past decade treatment of cancer has evolved greatly. Wheras previously many toxic agents were used to kill cancer cells, along with radiotherapy, today there is a new class of agents, immunosuppresants, and targetted gene therapy. Immunotherapy uses the body's own protective antibodies to destroy a foreign antigen in a cancer cell. Monoclonal antibodies are selectively produced against specific cancer cell lines. Pre-treatment genomics allows for individualized and personalized drug design.
Progress About Cancer.net Navigating Cancer Care
Types of Cancer Coping and Emotions
Introduction to Cancer Research
Navigating Cancer Care
A growing area of cancer research, called cancer genome research, compares genes found in tumors and genes found in healthy tissue in order to understand how these genes differ and which ones are important. To do this, researchers collect samples from all types of tumors to find out a tumor’s genetic “fingerprint” and then compare it to the fingerprints of healthy tissue from the same person. Different genes are involved in different tumor types, and understanding what genes are important to the development of cancer may lead to improvements in detecting, diagnosing, and treating cancer.
About cancer and cancer genomes
Cancer begins when normal cells start to change and grow uncontrollably, forming a mass called a tumor. All of these changes take place at the most basic level of the cell—its genes. Genes are made up of deoxyribonucleic acid (DNA), which contains all of the chemical instructions that tell cells what to do and when to do it. When these instructions have mistakes, cells may not function normally. Sometimes these mistakes result in uncontrolled, abnormal cell growth and the ability to invade and spread to other tissues and organs in the body. This is the beginning of cancer.
All of the genes in a cancer cell are known as a cancer genome. Many of these genes are like those in healthy cells; however, a few genes have specific mutations (changes) that are responsible for turning a previously healthy cell into a cancer cell. While some of these mutations are inherited (passed down from your parents), most happen during your lifetime. Many of these changes occur as a result of being exposed to environmental factors, such as chemicals, or from lifestyle choices, such as smoking. Others appear to happen at random as cells divide.
Researchers are learning that different tumors have different mutations, even if the cancer started in the same organ. In other words, not all lung tumors or breast tumors have the same genetic fingerprint. There is also evidence that a recurrent cancer (a cancer that comes back after treatment) has different mutations than the original cancer. This variation is what makes treating cancer so difficult, but it is also what provides opportunities for new treatments.
If you have been diagnosed with cancer, you might have had some tissue removed in a biopsy. The biopsy sample provides doctors with information about the best way to treat your cancer. Now doctors often use additional tests to learn whether the tumor has specific mutations that may affect your treatment options. For example, ASCO recommends that a person with advanced non-small cell lung cancer have the tumor tested for the epidermal growth factor receptor (EGFR) when a doctor is considering giving a treatment known as a tyrosine kinase inhibitor (TKI).
The Cancer Genome Atlas project
One of the biggest efforts underway to understand the cancer genome is The Cancer Genome Atlas(TCGA) project. This project was started in 2006 by the National Cancer Institute and the National Human Genome Research Institute. The idea is to create a “map” of various cancer genomes in order to better understand what turns a normal cell into a cancer cell and what makes one cancer different from another.
As part of TCGA, researchers are collecting tissue samples from patients treated at cancer centers across the United States. By studying hundreds of these tissue samples and comparing them to tissue samples from people who do not have cancer, researchers are mapping the genomes of glioblastoma (a malignant brain tumor), lung cancer, and ovarian cancer. TCGA expanded the range of its research; find a complete list of all the cancer genomes that TCGA is mapping here.
In the first results mapping the glioblastoma genome, researchers found several mutated genes that are responsible for the development and growth of glioblastoma, including three genetic mutations researchers previously did not know were common in this type of cancer. This information may help researchers determine if patients with a particular gene that is mutated may benefit from treatments that target that gene but not from other treatments. Researchers also pinpointed a mutated gene that may cause chemotherapy to not work in some people with glioblastoma.
Another important finding from TCGA is that tumors from the colon and the rectum, judging by their DNA fingerprints, are really a single type of cancer, not two different cancers as previously thought. This information helps doctors better understand how cancer begins and may improve future treatment for people with this cancer.
What this means for patients
Although some results of cancer genome mapping may not be ready for use in cancer treatment today, discoveries from this research may lead to better tests to diagnose cancer and new treatments that are more effective. Talk with your doctor to learn more about the role of genes in cancer, including whether your tumor should be tested for mutated genes and if there are any treatment options that target those genes.
More Information
Drug Discovery and Development
Key Messages:
- Once a new drug has been identified, it is first tested in a laboratory to learn how it is used by the body, identify potential side effects, and figure out what doses are safe to use.
- If the results of laboratory testing suggest the drug is likely to be safe and effective, it will be evaluated in research studies involving volunteers, known as clinical trials.
- Once clinical testing is complete, the U.S. Food and Drug Administration (FDA) will review the results and may approve the drug if the evidence shows it is safe and effective. Then the drug can be made available to doctors and patients.
Doctors and scientists are always looking for better ways to treat people with cancer. To do this, they are constantly developing and studying new drugs, as well as looking for new ways to use existing drugs.
For a drug to go from being an idea in the laboratory to something that can be prescribed by a doctor, it must go through an extensive development and approval process to make sure it effectively treats cancer and is safe for people to take. Typically, this process takes many years and costs hundreds of millions of dollars. However, depending on the drug, the actual amount of time and money required varies.
Preclinical research: Drug discovery and initial testing
The discovery of new cancer drugs happens in a variety of ways.
Accidental discovery. In the early 1940s, an explosion exposed sailors to poisonous mustard gas. After observing that these sailors developed low white blood cell counts, doctors began using nitrogen mustard (mechlorethamine [Mustargen]) to treat Hodgkin lymphoma, a cancer of the lymphatic system involving the white blood cells. Mechlorethamine is still used as a cancer treatment today. Accidental discoveries such as this are rare, though.
Testing plants, fungi, and animals. Paclitaxel (Taxol), which is used to treat several types of cancer, was originally identified in the bark of the Pacific Yew tree. More recently, the drug eribulin (Halaven) was developed from a primitive animal called a sea sponge. The National Cancer Institute (NCI) has samples of thousands of plants, marine organisms, bacteria, and fungi collected from around the world in the hopes of discovering new cancer treatments.
Studying the biology of cancer cells. Currently, most researchers who are developing drugs to treat cancer start by comparing the genetics (DNA) and cellular processes of cancer cells to healthy cells. This information is used to identify important steps in the cancer development process that could potentially be altered by a drug. For example, researchers learned that approximately 20% of all breast cancers have an abnormal amount of a specialized protein called HER2 that controls the growth and spread of cancer cells. Four drugs that specifically target HER2 have been developed: trastuzumab (Herceptin), lapatinib (Tykerb), pertuzumab (Perjeta), and ado-trastuzumab emtansine (Kadcyla). Now, a person diagnosed with breast cancer has her tumor tested to check for HER2 to find out if these drugs can be used to treat the cancer. Learn more about these targeted treatments.
Understanding the chemical structure of a drug target. Scientists may use computers to simulate the interaction of a potential drug and its target, similar to fitting two puzzle pieces together. Using information from the computer models, researchers can then design chemical compounds that interact with the specific drug target.
Once potential drugs are identified, they are usually tested in human tumor cells in the laboratory to see if they are able to stop the growth of cancer cells. Next, the potential drug is tested in animals to confirm it is still effective at treating cancer. Typically, researchers test the drug in two or more different animal species. Testing in animals also helps researchers learn how the new drug is used by the body, what side effects the drug may cause, and what dose of the drug should be used in human research trials.
Drug developers and sponsors
The FDA does not develop or test drugs. Instead, pharmaceutical companies and other organizations, such as university medical centers and some government agencies (for example, the NCI) work to discover and test new drugs. The organization that develops a drug is called the sponsor. The sponsor conducts the research needed to provide the FDA with the necessary information to help them make decisions about drug approval.
Clinical research: Testing in people
Before new drugs are allowed to be taken by people, the sponsor must submit an Investigational New Drug (IND) application to the FDA. The IND contains the results of the preclinical (laboratory and animal) studies, plans for clinical (human) trials, and details about how the new drug is made. The FDA approves potential drugs for human testing if the preclinical research indicates the drug is likely to be safe and effective, if the proposed clinical trials are designed correctly, and if the drug can be made the same way every time.
Clinical trials are research studies involving volunteers that are designed to evaluate whether a new drug is safe, effective, and possibly better than the current (standard) treatment. There are usually three (sometimes four) consecutive phases of a clinical trial. Each successive phase involves a larger number of patients and provides more detail about the new drug's safety and effectiveness. Clinical trials frequently take years to complete and may involve thousands of patients.
Clinical trials follow a risk-based approach. Earlier phases focus on safety, dosing, and how the body processes the drug, while later phases focus on how well the drug works. Later phases include a larger group of clinical trial participants. Learn more about clinical trials.
Clinical review and FDA approval
If the clinical trials are successful, the drug sponsor submits a New Drug Application (NDA) to the FDA requesting approval of the drug for use by patients. The NDA contains results from the preclinical and clinical studies, details about how the drug will be manufactured, and specifics of how it will be labeled, which includes how the drug will be given (injection or pill, for example), the potential side effects, and any known interactions with food or other medications.
The FDA may approve the drug if the evidence shows it is effective and safe for use as described in the labeling. Although no drug is completely safe or free from side effects, a drug is considered to be safe if the benefits of taking it outweigh the possible risks.
Post-approval research and post-marketing surveillance
Once a drug receives FDA approval, it can be marketed and made available to doctors and patients. However, the FDA may require that the sponsor conduct additional clinical trials (phase IV trials) to look for other potential side effects; to study the drug in new patient groups, such as older adults; or to evaluate the drug's long-term effects. Some drug manufacturers may conduct their own phase IV trials or perform new research aimed at gaining FDA approval to use the drug in a new way, such as for a different type of cancer or a different population of patients.
The FDA also conducts ongoing safety monitoring of drugs currently on the market, and drug manufacturers are responsible for reporting any new or serious side effects to the FDA. The FDA may withdraw a drug from the market if new evidence from ongoing use indicates it is not effective as a treatment or it is not safe.
More Information
Additional Resource
Wednesday: Health Reform- Short comings Beware Caveat Emptor !
Thursday: The Future of Medicine
Friday:
Next week: The Elephant in the Room